Some important statistical concepts

- Confidence intervals (Cls, usually reported as 95% Cls)
- Absolute risk reduction and relative risk reduction
- Number needed to treat/ number needed to harm
- Type 1 and Type 2 errors
- Estimating sample size when designing a study
- 2-by-2 tables (Chi square, Fisher exact, others)
- Odds ratios or Hazard ratios
- Sensitivity, Specificity and Receiver Operator Curves
- Likelihood ratios and Positive/Negative predictive Values
- Tests to Assess Statistical Significance (p values)
- Non-inferiority study designs

Ann Int Med 2009: 150: JC6-16

2x2 Contingency Tables: Chi Square/Fisher Exact /etc.

(used for categorical outcomes to calculate P values and odds ratios)

- A new treatment for Crohn's disease is compared to a standard treatment in 245 patients.
- 120 patients are randomized to the new treatment and 125 to the standard treatment, each for eight weeks.
- 90/120 given the new treatment group go into remission (75%) and 30/125 (25%) do not.
- 75/125 given the standard treatment go into remission (60%) and 50/125 (40%) do not.
- Remission (categorical variable) pre-defined as CDAI.
- Was there a significant improvement in outcome, or could this outcome have been due to chance?Let's vote!

Step 1: create standard 2x2 table

New Rx (a+b)
Standard Rx (c+d)

REN	MIT	NO REMIT
	a	b
	С	d

Enter the data from our study

	REMIT	NO REMIT
New Rx (n=120)	90(a)	30(b)
Standard Rx (n=125)	75(c)	50(d)

Chi square (χ^2) test

$$\chi^2 = n (|ad-bc| - n/2)^2$$

(a+b)(c+d)(a+c)(b+d)

$$\chi^2 = 6.264 \text{ (p=0.012)}$$

Fisher exact test: p=0.014

Odds ratio (OR) of a remission

New Rx Standard Rx

a+b+c+d=n=total patients in study a/b = odds of remission with New Rx; 3:1 c/d= odds of remission with Standard Rx; 1.5:1 a/b÷c/d= odds ratio of New compared to Standard Rx=ad/bc Odds ratio = 4,500/2,250=2.0; or $3:1\div1.5:1=2$.

This odds ratio of 2.0 might have occurred by chance alone.* 95% CI of the odds ratio or hazard ratio:

^{*} We know it did not occur by chance alone due to chi square/Fisher test results.

95% CI of an odds ratio

THE BASICS:

- $-\log_{10}x$ =the power by which you must raise 10 to obtain x.
- $\log_{10} 100 = 2$ because $10^2 = 100$; $\log_{10} 10 = 1$ because $10^1 = 10$ and $\log_{10} 1 = 0$.
- $e \cong 2.71828182846$
- log_e x or lnx= the power by which you must raise the number e in order to obtain x.
- In2.71828182846=1 and In 1=0.
- Thus, if ad/bc =1, then In ad/bc=0
- If ad/bc>1, In ac/b>0 (i.e., is a positive number, such as 0.13 or 6.98)
- If ad/bc<1, In ad/bc<0)i.e., is a negative number, such as -0.47 or -3.01)

Calculating 95% CI of the odds ratio (OR)

• Step 1: Calculate the In of the 95% CI: In 0.5% CI = In ad/hc $\pm 1.06\%$ 1/2 1 /h 1 //c

In 95% CI = In ad/bc \pm 1.96 $\sqrt{1/a+1/b+1/c+1/d}$ Colitis study: In 95% CI = In 2.0 \pm 1.96 $\sqrt{1/90+1/30+1/75+1/50}$ Since In 2.00= 0.693

Thus, $\ln 95\%$ CI= $0.693 \pm 0.508 = (+0.185, +1.201)$.

Step2: From the In of the 95% CI, determine the 95% CI.

To find the actual 95% CI for the OR, we must find the antiln of +0.185 and of +1.201.

Antiln x is the number that results when you raise e to the x power.

antiln +0.185 = $e^{.185}$ = **1.20** antiln +1.201 = $e^{1.201}$ = **3.32**.

∴ 95% CI of the OR =**1.20**, **3.32**.

Thus, the odds ratio for a remission with the new treatment is 2.00 (95% CI, 1.20-3.32). As this odds ratio does not cross 1.00, the difference is unlikely due to chance and is significant at the 0.05 level.

Subgroup	TDF	TDF-FTC	Placebo		io (95% CI), Placebo	P Value		io (95% CI), vs. Placebo	P Value
angivap	no. of events/total no. (rate per 100 person-yr)					1 Value	1D1-11 C VS. 1 lacebo		TYdiac
Overall			100	1			1		
Modified intention-to-treat population	17/1579 (0.65)	13/1576 (0.50)	52/1578 (1.99)	•	0.33 (0.19-0.56)	< 0.001	•	0.25 (0.13-0.45)	<0.001
Intention-to-treat population	22/1584 (0.84)	16/1579 (0.61)	58/1584 (2.22)	-	0.38 (0.23-0.62)	< 0.001	•	0.27 (0.16-0.48)	< 0.001
Sex of HIV-1-seronegative partner				:		0.65			0.24
Male	9/984 (0.56)	4/1010 (0.24)	24/959 (1.49)		0.37 (0.17-0.80)		• i	0.16 (0.06-0.46)	
Female	8/595 (0.81)	9/566 (0.95)	28/619 (2.81)	•	0.29 (0.13-0.63)		•	0.34 (0.16-0.72)	
Age of HIV-1-seronegative partner				į		0.79	i		0.06
<25 yr	3/184 (1.07)	6/177 (2.34)	10/170 (4.04)	$\stackrel{\bullet}{\longrightarrow}$	0.28 (0.08-1.01)		$\stackrel{\bullet}{\longrightarrow}$	0.59 (0.21-1.61)	
≥25 yr	14/1395 (0.60)	7/1399 (0.30)	42/1408 (1.78)	-	0.34 (0.18-0.61)		•	0.17 (0.07-0.37)	
Unprotected sex with study partner during past mo				1		0.05			0.77
No	14/1138 (0.72)	8/1161 (0.40)	30/1170 (1.50)		0.47 (0.25-0.89)		•	0.27 (0.12-0.58)	
Yes	3/441 (0.46)	5/415 (0.78)	22/408 (3.60)	•	0.13 (0.04-0.44)		•	0.22 (0.08-0.58)	
Country				İ		0.94	į		0.46
Kenya	7/699 (0.61)	7/697 (0.60)	22/694 (1.90)	•	0.32 (0.14-0.74)			0.31 (0.13-0.74)	
Uganda	10/880 (0.69)	6/879 (0.41)	30/884 (2.07)	•	0.33 (0.16-0.68)		•	0.20 (0.08-0.48)	
Circumcision status of HIV-1-seronegative men				1		0.54			0.42
Circumcised	6/542 (0.70)	3/543 (0.34)	13/512 (1.52)	→	0.46 (0.17-1.20)		•	0.22 (0.06-0.79)	
Uncircumcised	3/440 (0.40)	1/467 (0.12)	11/447 (1.45)	•	0.28 (0.08-1.00)		•	0.09 (0.01-0.68)	
Plasma HIV-1 RNA level of HIV-1-seropositive partn	er			ì		0.39	į		0.79
<50,000 copies/ml	13/1277 (0.61)	9/1279 (0.42)	32/1263 (1.51)	-	0.40 (0.21-0.76)		•	0.28 (0.13-0.58)	
≥50,000 copies/ml	4/269 (0.90)	4/271 (0.90)	18/289 (3.93)	-	0.23 (0.08-0.69)		•	0.23 (0.08-0.68)	
CD4 count of HIV-1-seropositive partner				!		0.03			0.39
250–349 cells/mm ³	8/312 (1.56)	4/297 (0.78)	10/299 (1.95)	→	0.79 (0.31-2.01)		→	0.39 (0.12-1.26)	
≥350 cells/mm³	9/1267 (0.43)	9/1279 (0.43)	42/1279 (2.01)	•	0.21 (0.10-0.44)		•	0.21 (0.10-0.44)	
				0.0 0.5 1.0		(0.0 0.5 1.0		

Some important statistical concepts

- Confidence intervals (Cls, usually reported as 95% Cls)
- Absolute risk reduction and relative risk reduction
- Number needed to treat/ number needed to harm
- Type 1 and Type 2 errors
- Estimating sample size when designing a study
- 2-by-2 tables (Chi square, Fisher exact, others)
- Odds ratios or hazard ratios
- Sensitivity, Specificity and Receiver Operator Curves/AUCs
- Likelihood ratios and Positive/Negative predictive Values
- Tests to Assess Statistical Significance (p values)
- Non-inferiority study designs

Ann Int Med 2009: 150: JC6-16

Sensitivity and Specificity

- <u>Sensitivity</u>: true positives (proportion of individuals with the disease who test +; ranges from 0 to 1, or from 0% to 100%)
- <u>1-Sensitivity</u>: false negatives (proportion of individuals with the disease who test -; ranges from 0 to 1, or 0% to 100%)
 - If sensitivity = 0.8 (80%), 1-sensitivity = 0.2 (20% false negatives)
- <u>Specificity</u>: true negatives (proportion of individuals without the disease who test -; ranges from 0 to 1, or from 0% to 100%)
- 1-Specificity: false positives (proportion of individuals without the disease who test +; ranges from 0 to 1, or 0% to 100%)
 - If specificity = 0.92 (92%), 1-specificity = 0.08 (8% false positives)

Receiver Operating Curve (ROC) and Areas under the Curve (AUC)

- Plots sensitivity of the test (true + rate, TPR) on Y axis, from 0 to 1 vs. 1-specificity (false + rate, FPR) on X axis, from 0 to 1 at different test cutoffs
- <u>Perfect Classification</u>: AUC=1 (area of a square with sides=1)
- Random guess:
 AUC=0.5 (area of a triangle with base and height=1) (see B)
- AUC between 0.5 and 1: Test is **Better** than a random guess (see A and C)
- AUC between 0 and 0.5:
 Test is Worse than a random guess (see D)
- AUC also has a 95% CI
 - e.g., 0.78 (0.69-0.87)

ROCs of 3 tests with AUCs better than a random guess (AUC 0.5-1)

Likelihood Ratios (LR) and Positive/Negative Predictive Values (PPV/NPV) can be easily derived from Sensitivity and Specificity

Likelihood ratios: does the test *usefully* change the probability (likelihood) of a disease or condition?

Positive (+) likelihood ratio= true+/false + =sensitivity/1-specificity.

• The <u>higher</u> the + likelihood ratio, the more confident we are that the patient has the condition if the test is +. + LR can approach ∞ .

Negative (-) likelihood ratio = false-/true - = 1- sensitivity/ specificity.

• The <u>lower</u> the – likelihood ratios, the more confident we are that the patient does not have the condition if the test is -. – **LR** can approach 0.

Example: Use of + and - likelihood ratios

- Your patient with COPD has an acute onset of worsening dyspnea. He had arthroscopic knee surgery 2 weeks ago. There is no leg swelling or leg pain, hemoptysis, personal or family history PE or DVT, or malignancy. You clinically assess the odds of him having a PE as 50:50 (1:1), or equally likely that he had a PE as that he did not have a PE (eg, COPD exacerbation).
- If ordered and performed, how would the results of a pulmonary artery CT angiogram (CTA) change your estimated likelihood of PE in this patient? In other words, how good would a CTA be in helping you diagnose or exclude a PE in this patient?

Example, cont'd

Literature (Annals Internal Medicine 136: 286-287, 2002):

Pulmonary CTA and pulmonary angiography (gold standard) were performed in 250 patients with possible PE.

50 (20%) of the patients had PE on pulmonary angiography. 200 (80%) had no PE on angiography.

 $CT\Delta + CT\Delta$

Results:

	CIA!	<u>CIA</u>
PE on pulm angio (n=50)	35	15
No PE on pulm angio (n=200)	2	198

Example 1, continued

Likelihood ratio (LR) calculations for CTA:

```
CTA sensitivity (true +)= 35/50 (.70), or 70%

1-sensitivity (false - )= 15/50 (.30), or 30%

CTA specificity (true - )= 198/200 (.99), or 99%

1-specificity (false + )=2/200 (.01), or 1%
```

- +LR = sensitivity/1-specificity = true+/false+ = .70/.01=70 (PE 70 x as likely as before test). $1:1 \rightarrow 70:1$
- -LR = 1-sensitivity /specificity= false-/true- = .30/.99=.30 (PE .30 x as likely as before test) $1:1 \rightarrow 0.3:1$

Example 1, continued

PPV and NPV calculations for CTA:

```
CTA sensitivity (true +)= 35/50 (.70), or 70%

1-sensitivity (false - )= 15/50 (.30), or 30%

CTA specificity (true - )= 198/200 (.99), or 99%

1-specificity (false + )=2/200 (.01), or 1%
```

```
PPV for CTA= true+/(true+ plus false+)= 35/37= 95% NPV for CTA= true-/(true- plus false -)= 198/213= 93%
```

Some important statistical concepts

- Confidence intervals (CIs, usually reported as 95% CIs)
- Absolute risk reduction and relative risk reduction
- Number needed to treat/ number needed to harm
- Type 1 and Type 2 errors
- Estimating sample size when designing a study
- 2-by-2 tables (Chi square, Fisher exact, others)
- Odds ratios or hazard ratios
- Sensitivity, Specificity and Receiver Operator Curves/AUCs
- Likelihood ratios and Positive/Negative predictive Values
- Tests to Assess Statistical Significance (p values)
- Non-inferiority study designs

Ann Int Med 2009: 150: JC6-16

What Test(s) to Use:

Continuous variable, normally distributed: Use student's t test

- Use a paired t if each subject is his/her own control 1
 - Usually cross-over design
- Use an unpaired t (group t) if there are two groups 2
 - Usually where group assignment is random

If data are <u>not</u> normally distributed:

If the variable is **continuous**, such as age or PaO₂?

- Use Wilcoxon's sign rank test for paired data 3
- Use Mann Whitney U test for unpaired data 4

If the variable is categorical, such as gender or smoking

Use Fisher's exact test, 5

If there >2 study groups:

Use analysis of variance (ANOVA) or covariance (ANCOVA) 6

What Tests to Use: Correlations (r) between variables

If the variables are normally distributed:

Use Pearson's test 7:

Pearson's r ranges from -1 to +1.

 $r \cong 0$ indicates no correlation.

If the variables are not normally distributed:

Use Spearman's test 8:

Spearman's r ranges from -1 to +1

 $r \cong 0$ indicates no correlation.

P values depend both on r and N. P< 0.05 usually used.

METABOLIC ALKALOSIS (Feldman and Alvarez)

Free Online Resources for Common Tests of Statistical Significance

TEST	WEBSITE
Paired t	http://graphpad.com/quickcalcs
Unpaired t	http://graphpad.com.quickcalcs
Fisher exact	http://graphpad.com/quickcalcs
Mann Whitney/Wilcoxon/ANOVA/etc.	http://vassarstats.net/

Some important statistical concepts

- Confidence intervals (CIs, usually reported as 95% CIs)
- Absolute risk reduction and relative risk reduction
- Number needed to treat/ number needed to harm
- Type 1 and Type 2 errors
- Estimating sample size when designing a study
- 2-by-2 tables (Chi square, Fisher exact, others)
- Odds ratios or hazard ratios
- Sensitivity, Specificity and Receiver Operator Curves/AUCs
- Likelihood ratios and Positive/Negative predictive Values
- Tests to Assess Statistical Significance (p values)
- Non-inferiority study designs

Ann Int Med 2009: 150: JC6-16

New Treatments and Trials

- Better (Superior)
- Equal
- Worse (Inferior)
 - than the usual treatment

A New Treatment Can Truly Be: A Trial Can Test Whether New is:

- Better or Worse
 - superiority trial
 - inferiority trial
- Not better (non-superiority trial)*
- Not worse (non-inferiority trial)

* rarely done

Non-inferiority trials

- Non-inferiority trials are intended to show that the effect of a new treatment is not worse than that of an active control by more than a specified amount.
- The non-inferiority margin (NIM) is chosen by the investigators <u>before</u> the study (a priori) and can be somewhat arbitrary.
- Study endpoints in non-inferiority trials can be efficacy or safety parameters or a combination of the two.
- Study design may include 3 arms with placebo group (preferred) or 2 arms with only new and usual treatments (much less ideal, since no internal validation that new treatment is better than placebo)
- Delta (Δ) is the measured difference (best estimate of the true difference) between the two active treatments. Δ will have a 95% CI.
 - **Example**: $\Delta = -4\%$ (95% CI, -9% to +1%)

Inference for Non-Inferiority

Delta Limits (95%) and Confidence Intervals

Inference for Non-Inferiority

Delta Limits (95%) and Confidence Intervals

Non-Inferiority Trial using Hazard Ratios: EINSTEIN-PE study

- Non-inferiority trial of rivaroxaban (Xarelto) versus warfarin or acenocoumarol in PE
- "Assuming equal efficacy of the two study treatments, we determined that 88 events would provide 90% power (1- β) to show that rivaroxaban was non-inferior to standard therapy, using a margin of 2.0 for the upper limit of the 95% confidence interval for the observed hazard ratio, with a two-sided α level of 0.05."
- Results: Rivaroxaban had 50 events vs. 44 in standard therapy group, with HR of 1.12 (0.75-1.68).
- Note: 1.68 is < 2.0.
- Authors' conclusion: Rivaroxaban is noninferior to vit K antagonist in PE.
 - What if NIM had been set a priori at 1.6 instead of 2.0?